Clinical and radiographic evaluation of small-diameter (3.3-mm) implants followed for 1–7 years: a longitudinal study

Key words: narrow implants, partial edentulism, partial fixed prostheses, peri-implant bone resorption, single-tooth prostheses, standard-diameter implants

Abstract: Implants with a small diameter may be used where bone width is reduced or in single-tooth gaps with limited mesiodistal space, such as for the replacement of lateral maxillary or mandibular incisors. The purpose of the present longitudinal study was to compare the prognosis of narrow implants (3.3-mm-diameter) to standard (4.1-mm-diameter) implants. Over a 7-year period, 122 narrow implants were inserted in 68 patients to support 45 partial fixed prostheses (PFD) and 23 single-tooth prostheses (ST). Furthermore, 120 patients received 208 standard implants and were restored with 70 PFD and 50 ST, respectively. Clinical and radiographic assessment data were provided. Six (1.8%) out of 330 implants failed. Cumulative survival and success rates were calculated with life-table analyses processed by collecting clinical and radiographic data. For narrow implants, the cumulative survival rate was 98.1% in the maxilla and 96.9% in the mandible. The cumulative success rate was 96.1% in the maxilla and 92% in the mandible. Conversely, standard-diameter implants showed a cumulative survival rate of 96.8% in the maxilla and 97.9% in the mandible. The cumulative success rate was 97.6% in the maxilla and 93.8% in the mandible. Cumulative survival and success rates of small-diameter implants and standard-diameter implants were not statistically different (P > 0.05). Type 4 bone was a determining failure factor, while marginal bone loss was not influenced by the different implant diameters. The results suggest that small-diameter implants can be successfully used in the treatment of partially edentulous patients.

Bone quantity and quality often determine whether or not a standard implant can be placed. A reduced buccolingual dimension (less than 4 mm in width) does not allow the placement of a standard-diameter implant without increasing the risk of implant threads’ exposure. Techniques for local bone augmentation have been described, and their successful use has been documented [Buser et al. 1990; Hämmerle et al. 1998; Chiapasco et al. 2001]. However, reconstructive procedures add additional risk and cost because of the necessity of bone harvesting and grafting. Moreover, guided bone regeneration (GBR) may present some limitations such as unpredictable bone gain, risk of membrane exposure, unpredictable bone resorption after barriers are removed and elongation of treatment time. Hence, narrow-diameter implants present an alternative treatment option [Polizzi et al. 1999; Andersen et al. 2001; Zinsli et al. 2004] in areas with limited ridge width. They can also be placed between adjacent teeth that have only a narrow space such as for the replacement of incisors.

Nevertheless, an increased implant surface area can engage more cortical bone. An
experimental study in rabbits showed that wider implant diameters resulted in increased removal torque values [Ivanoff et al. 1999]. Clinical reports indicated higher success rates for 4-mm-diameter implants as compared with 3.75-mm-diameter implants in soft quality bone [van Steenberge et al. 1990; Lekholm 1992]. In addition, decreasing the diameter also means increasing the risk of implant fracture because of reduced mechanical stability, and increasing the risk of overload [Schwarz 2000]. Some studies focused exclusively on the use of small-diameter implants [Block et al. 1990; Barber & Seckinger 1994; Davarpanah et al. 2000], positive treatment outcomes were documented, but their long-term results remain to be determined [Vigolo & Givani 2000].

The aim of the present longitudinal study was to compare the clinical outcome of small-diameter ITI™ implants with standard-diameter ITI™ implants, consecutively placed over a 7-year interval. In addition, this study aimed to identify prognostic variables associated with implant failures, as bone quality and implant positioning site.

Material and methods

Patients
Patients included in the present study were treated at the Dental Clinic, Department of Medicine, Surgery and Dentistry, University of Milan, Italy.

Over a time period of 7 years [September 1996-July 2003], a total of 188 partially edentulous patients [83 men and 105 women] in Applegate–Kennedy Classes I and II were consecutively treated with 330 two-part, grade IV, pure titanium, solid screw, ITI™ [Institute Straumann, Waldenburg/BL, Switzerland] implants. The age of the patients ranged between 21 and 74 years [mean age: 55.8 years].

All patients presented good general health at the time of surgical procedure, with absence of local inflammation and absence of mucosal disease. The exclusion criteria were as follows: tobacco abuse, i.e., more than 10 cigarettes/day; history of radiotherapy in the head and neck region; leukocyte diseases at the time of surgical procedure; uncontrolled diabetes; severe clenching or bruxism; noncompliant patients; and bone grafts or local GBR before implant placement.

Patients with prostheses supported by small-diameter and standard-diameter implants used in combination were excluded from the study. No patients received more than one implant-supported prosthesis. No implants of 8 mm in length were included in the study.

Routine documentation was as follows: panoramic radiographs taken before treatment and periapical radiographs taken before treatment, at the time of implant placement, at the time of prosthetic rehabilitation and every year thereafter. Twenty-three patients showing severe atrophic ridges were also evaluated before treatment with computed tomography [CT] scans whenever radiographs were not sufficient to plan the implant treatment.

Two groups of patients were considered: 68 patients were treated with 122 small-diameter [3.3-mm] implants supporting 45 partial fixed prostheses [PFD] and 23 single-tooth prostheses [ST]. Another 120 patients received 208 standard-diameter [4.1-mm] implants supporting 70 PFD and 50 ST, respectively (Table 1). Both for small-[3.3-mm] and standard-diameter [4.1-mm] implants, two different lengths [10 and 12 mm] were considered. All implants were titanium plasma-sprayed [TPS] surfaced. Small-diameter implants were used for the following clinical indications: narrow buccolingual width of the maxillary or mandibular ridge in partial edentulous patients; and reduced single-tooth mesiodistal gaps in the maxilla or mandible. Overall, 159 and 171 implants were placed in the maxilla and mandible [Table 2], respectively.

If a patient could not be followed at consecutive annual examination, the corresponding implants were classified as ‘drop-out implants’. The reasons for drop-outs were death [one patient], moving out of the area [eight] and lack of interest in attending the examinations [five]. Moreover, 13 patients could not be reached. Thus, a total of 27 patients, representing 48 implants [corresponding to 14.5% of the placed implants] and 27 restorations, were excluded from the follow-up protocol.

Surgical treatment
All patients were prepared and draped to ensure strict asepsis. The type of anesthesia was chosen according to the predetermined duration of the procedure and patience compliance. A horizontal incision was beveled toward the crest of the ridge, and then it was extended around the cervical margins of each of the adjacent teeth. Vertical release incisions were avoided whenever possible. Otherwise, it was made one tooth away from the recipient site to include the papilla; it was then extended into the unattached mucosa. After elevating a full-thickness flap, each of the recipient sites was adequately prepared and the implants were positioned. Healing abutments were screwed to each of the positioned implants. The surgical access was sutured with horizontal mattress sutures at the level of the crestal incision and with sutures separated by the relaxing incisions. All patients received antibiotics and nonsteroidal analgesics post-operatively. 0.2% chlorhexidine mouthwash was prescribed. After a 7-day waiting period for closure of the surgical wound, sutures were removed.

Prosthetic treatment
Following a healing period of 3–6 months, patients were recalled for a clinical and radiographic evaluation [periapical radiographs were used]; the healing duration was

| Table 1. Implant distribution according to the type of prosthesis |
|----------------------|----------------------|----------------------|
| Implant (mm) |
| | Implants supporting single-tooth prostheses ST (73) | Implants supporting partial-fixed prostheses PFD (115) |
| 3.3 x 10 | 8 | 20 |
| 3.3 x 10 | 8 | 39 |
| 3.3 x 12 | 5 | 24 |
| 3.3 x 12 | 2 | 16 |
| 4.1 x 10 | 16 | 83 |
| 4.1 x 10 | 19 | 26 |
| 4.1 x 12 | 8 | 26 |
| 4.1 x 12 | 7 | 23 |
| Total | 73 | 257 |

ST, single-tooth prosthesis; PFD, partial fixed prosthesis.
based on bone quality (Lekholm & Zarb 1985). Standards of the ITI® system were followed for prosthetic procedures [Romeo et al. 2001, 2003].

Frameworks and esthetic veneers were fabricated in gold alloy and porcelain. No welding was performed. Cemented prostheses were fixed with zinc oxyphosphate cement [58 ST and 83 PFD prostheses, respectively]. Screw-retained prostheses [15 ST and 32 PFD prostheses, respectively] were secured to the abutments with abutment-framework screws; a manual torque driver was used. Forty-one temporary prostheses were used to restore anterior teeth. Opposite dentition was natural teeth, fixed prostheses and partial or total mobile prostheses for 172, 127 and 31 implants, respectively.

Assessments
After completion of prosthetic treatment, patients were enrolled in a recall program of supportive therapy and visits every year by means of radiographic and clinical examinations. For the statistical analyses, radiographic and clinical assessments were considered at time of implant prosthetic loading and at last evaluation (Table 3).

The following parameters were considered: (I) peri-implant bone resorption (MBL) radiographic assessment mesial and distal to each implant. Periapical radiographs (Kodak Ekta-speed EP-22, Eastman Kodak Co., Rochester, NY, USA) were taken with a parallel technique to control projection geometry: the following exposure parameters [65–90 kV, 7.5–10 mA and 0.22–0.25 s] were used [Hausmann et al. 1989, 1991]. A computerized analysis [Image-J® image processing software] was performed to determine MBL values (Brägger 1994; Romeo et al. 2003) after converting radiographs to digitalized images (Canoscan® radiograph scanner, Japan). Images were 512 × 512 pixels, having 64 gray levels. In 50 randomly selected cases [66 implants], MBL was remeasured. The mean difference between the first and second assessment was small (0.021 mm), and it can be considered negligible. Measurements were made by one of the authors. (II) Peri-implant soft tissue parameters such as modified bleeding index (MBI) and probing depth (PD) [Mombelli & Lang 1994, 1998] were assessed with a calibrated plastic probe (TPS probe, Vivadent, Schaan, Liechtenstein). Four sites for each implant (mesial, distal, buccal and lingual) were considered for recording probing depth scores. (III) Implant stability, both manually [score 0–2] [Mombelli et al. 1987] and by means of Periotest Instrument® (Siemens AG, Bensheim, Germany) [Chiacioso et al. 2001]. The Periotest® was used, with the rod of the device applied tangential to the implant, perpendicular to the longitudinal axis. The patient’s head was positioned so that the device could be held horizontally. The test was repeated until the Periotest® values (PTvs) were identical on two subsequent measurements. (IV) Peri-implant bone quality; jawbone quality classification recognized four groups [Lekholm & Zarb 1985]: (1) Almost the entire jaw comprised of homogeneous compact bone. (2) A thick layer of compact bone surrounded a core of dense trabecular bone. (3) A thin layer of cortical bone surrounded a core of dense trabecular bone of favorable strength. (4) A thin layer of cortical bone surrounded a core of low-density trabecular bone. Bone quality

Table 2. Implant distribution by site

<table>
<thead>
<tr>
<th>Site</th>
<th>Narrow-diameter implants</th>
<th>Standard-diameter implants</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No. placed</td>
<td>No. failed</td>
</tr>
<tr>
<td>Maxillary anterior</td>
<td>29</td>
<td>0</td>
</tr>
<tr>
<td>Maxillary posterior</td>
<td>27</td>
<td>1</td>
</tr>
<tr>
<td>Mandibular anterior</td>
<td>18</td>
<td>2</td>
</tr>
<tr>
<td>Mandibular posterior</td>
<td>48</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>122</td>
<td>3</td>
</tr>
</tbody>
</table>

*Anterior region included the canine and incisive districts. 
†Posterior region included premolar and molar districts.

Table 3. Implant distribution: complications and failures

<table>
<thead>
<tr>
<th>Site</th>
<th>Bone quality*</th>
<th>Implant dimensions (mm)</th>
<th>Type of prosthesis</th>
<th>Cause of compliance</th>
<th>Cause of failure</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>IV</td>
<td>3.3 × 10 SS</td>
<td>ST</td>
<td>–</td>
<td>Mobility because of severe peri-implantitis</td>
</tr>
<tr>
<td>41</td>
<td>IV</td>
<td>3.3 × 10 SS</td>
<td>ST</td>
<td>–</td>
<td>Mobility because of severe peri-implantitis</td>
</tr>
<tr>
<td>31</td>
<td>III</td>
<td>3.3 × 10 SS</td>
<td>ST</td>
<td>–</td>
<td>Mobility because of severe peri-implantitis</td>
</tr>
<tr>
<td>11</td>
<td>IV</td>
<td>3.3 × 12 SS</td>
<td>ST</td>
<td>Successfully treated peri-implantitis</td>
<td>–</td>
</tr>
<tr>
<td>43</td>
<td>III</td>
<td>3.3 × 10 SS</td>
<td>PFD</td>
<td>Pathologic peri-implant bone resorption</td>
<td>–</td>
</tr>
<tr>
<td>35</td>
<td>III</td>
<td>3.3 × 10 SS</td>
<td>PFD</td>
<td>Pathologic peri-implant bone resorption</td>
<td>–</td>
</tr>
<tr>
<td>36</td>
<td>II</td>
<td>3.3 × 10 SS</td>
<td>ST</td>
<td>Pathologic peri-implant bone resorption</td>
<td>–</td>
</tr>
<tr>
<td>36</td>
<td>II</td>
<td>4.1 × 10 SS</td>
<td>ST</td>
<td>Mobility because of severe peri-implantitis</td>
<td>–</td>
</tr>
<tr>
<td>47</td>
<td>IV</td>
<td>4.1 × 10 SS</td>
<td>ST</td>
<td>Mobility because of severe peri-implantitis</td>
<td>–</td>
</tr>
<tr>
<td>15</td>
<td>IV</td>
<td>4.1 × 12 SS</td>
<td>PFD</td>
<td>Mobility because of severe peri-implantitis</td>
<td>–</td>
</tr>
<tr>
<td>36</td>
<td>III</td>
<td>4.1 × 10 SS</td>
<td>PFD</td>
<td>Successfully treated peri-implantitis</td>
<td>–</td>
</tr>
<tr>
<td>36</td>
<td>II</td>
<td>4.1 × 10 SS</td>
<td>PFD</td>
<td>Pathologic peri-implant bone resorption</td>
<td>–</td>
</tr>
<tr>
<td>37</td>
<td>III</td>
<td>4.1 × 12 SS</td>
<td>PFD</td>
<td>Pathologic peri-implant bone resorption</td>
<td>–</td>
</tr>
<tr>
<td>46</td>
<td>I</td>
<td>4.1 × 10 SS</td>
<td>ST</td>
<td>Successfully treated peri-implantitis</td>
<td>–</td>
</tr>
</tbody>
</table>


Tooth numbers: 11 = maxillary right first incisor, 14 = maxillary right first premolar, 16 = maxillary right first molar, 24 = maxillary left first premolar, 31 = mandibular left first incisor, 35 = mandibular right second premolar, 36 = mandibular left first molar, 37 = mandibular left second molar, 41 = mandibular right first incisor, 43 = mandibular right first canine, 46 = mandibular right first molar, 47 = mandibular right second molar.

SS, solid screw; ST, single-tooth prosthesis; PFD, partial-fixed prosthesis.
within the jaw was determined during explorative drilling in the implant site preparation.

**Prognostic criteria**

Implant stability, peri-implant conditions, marginal bone loss and other treatment-related complications, as well as success and survival criteria were evaluated according to Albrektsson et al. (1986) and Roos et al. (1997).

Implant success was calculated on the following parameters:

- Absence of mobility.
- Absence of painful symptoms or parasthesia.
- Absence of radiolucency during radiographic evaluation.
- Absence of progressive marginal bone loss (bone resorption in measurement areas not greater than 1 mm, during the first year of implant positioning, and 0.2 mm/year in subsequent years).
- Peri-implant probing depth ≤3 mm on each peri-implant site (mesial, distal, buccal, oral).

Implant survivals included:

- Therapeutic implant successes.
- Functional and asymptomatic in situ implants considered as showing a peri-implant probing MBL rate that exceeds the maximum limits established by the present study.
- Functional and asymptomatic in situ implants after peri-implantitis treatment (Mombelli & Lang 1998).

Clinical mobility (because of implant overloading, implant fracture or peri-implantitis not treated successfully) was mandatory for implant removal. Implants showing mobility were regarded as ‘failures’.

**Statistical analysis**

The statistical analysis was performed with the life-table analysis described by Kalbleish & Prentice (1980) and Colton (1988). The data analysis was performed at end of February 2004. Thus, all restored implants had completed at least 1-year clinical examination. Cumulative survival and success rates were calculated for the group of 122 small-diameter implants and the one of 208 standard-diameter implants, divided by jaw. The internal survival rate for each time interval and the entire 6-year period was considered. Life tables included the following parameters: time period (observation time), number of implants at the start of the interval, number of early failed implants (not loaded implants), number of loaded implants, number of implants lost to follow-up as a result of patient dropout, number of implants ‘under risk’ (it represented the ‘harmonic mean’ of the implants at the beginning of an interval and the ones remaining at the end of the same interval), number of failed implants during the interval, annual survival and success rates, and cumulative survival and success rates. The \( \chi^2 \) test was performed to compare the survival and success rates of small-diameter implants and standard-diameter implants, respectively. In addition, the influence of implant diameter on parameters such as MBL and PTVs was tested by means of multiple linear regression analyses.

**Results**

No early failures were observed, thus, all the positioned implants (330) were loaded. During the follow-up period, two standard-diameter and three small-diameter implants were found to be mobile because of untreatable peri-implant infection and were therefore removed. One standard-diameter implant failed owing to biomechanical overload after 3 years of function. No implant fractures occurred. Failed implants sizes were 3.3 × 10 mm (three), 4.1 × 10 mm (two), and 4.1 × 12 mm (one), respectively. Two failed implants were positioned in the maxilla and four in the mandible. The distribution of failed implants is reported in Table 3. Furthermore, four peri-implantitis were observed and successfully treated by providing interceptive supportive therapy. For one of these implants, professional cleaning was prescribed, followed by a phase (14 days) of administering 0.2% chlorhexidine rinse. For three implants, the threads were smoothed by polishing the implant surface, and the implants were maintained without further complications.

Two standard and three narrow implants showed more than 1 mm of marginal bone loss during the first year of loading, followed by more than 0.2 mm bone resorption per year, respectively. Five standard- and four small-diameter implants were recorded as ‘complications’ in life-table analysis (Table 3). Six standard-diameter and five small-diameter implants had peri-implant PD ≥3 mm on each peri-implant site.

Implant distribution according to jaw-bone quality is reported in Table 4. Four failed implants were placed in a type 4 quality bone, while one failed implant was placed in a type 2 bone and one was positioned in a type 3 bone. A significantly higher \([P<0.05]\) rate of failures was recorded for implants placed in type 4 bone (7.8%) than implants placed in type 3 bone (0.9%) or type 2 bone (0.8%), respectively.

The mean MBL, PD and MBI values were recorded for narrow- and standard-diameter implants at the beginning of prosthetic load and at the time of the last control (Table 5). A progressive peri-implant bone resorption was observed and regarded to be comparable with the limits suggested by Albrektsson et al. (1986) and Roos et al. (1997). Moreover, PD and MBI scores recorded at first clinical evaluation exhibited small changes as compared with those recorded at last evaluation: this trend was noted both for narrow- and standard-diameter implants. No statistically significant differences in MBL, PD and MBI values were observed between small- and standard-diameter implants \([P>0.05]\): hence, no relationship between implant diameter and these parameters was seen, as tested by multiple linear regression analysis.

After the prostheses placement, the mean PTVs for maxillary 3.3- and 4.1-mm implants were –2.1 and –3.5 U, respectively, whereas the mean PTVs for mandibular 3.3- and 4.1-mm implants were –3.9 and –5.0 U, respectively (Table 6). PTVs obtained for maxillary and mandibular 4.1-mm implants were 1.4 and 1.1 U lower, respectively, than those obtained for 3.3-mm-diameter implants. Instead, at the last check-up visit, the PTV observed for maxillary and mandibular 4.1-mm-diameter

---

**Table 4. Implant distribution according to bone quality**

<table>
<thead>
<tr>
<th>Arch</th>
<th>Bone quality*</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maxilla</td>
<td>10</td>
<td>28</td>
<td>81</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>Mandible</td>
<td>32</td>
<td>94</td>
<td>34</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>42</td>
<td>122</td>
<td>115</td>
<td>51</td>
<td></td>
</tr>
</tbody>
</table>

implants was slightly lower (0.2 and 0.3 U only, respectively) than those of 3.3-mm-diameter implants: these data were similar so that no relationship between implant diameters and implant stability was seen \(P > 0.05\).

Implant distribution according to opposing teeth or prostheses was considered: 95 \(45.6\%\) and 84 \(40.4\%\) standard-diameter \(4.1\-mm\) implants were opposed to natural teeth and fixed prostheses, respectively. Seventy-seven \(63.1\%\) and 43 \(35.2\%\) small-diameter \(3.3\-mm\) implants were opposed to natural teeth and fixed prostheses, respectively; 29 \(13.9\%\) standard and 12 \(9.8\%\) narrow implants were opposed to partial mobile prostheses, respectively. Distribution of failed implants according to opposing dentition did not indicate significant differences between natural teeth or prostheses \(P > 0.05\), as both implants opposed to natural teeth and implants opposed to fixed prostheses showed three failures each.

Over the 7-year follow-up period, survival and success rates were calculated for implants inserted into the maxilla and into the mandible, respectively (Tables 7–10). The maxillary narrow implants exhibited cumulative survival and success rates of 98.1% and 96.1%, respectively, those placed in the mandible revealed cumulative survival and success rates of 96.9% and 92%, respectively. Conversely, cumulative survival and success rates of 98.8% and 97.6%, respectively, have been a result of standard-diameter implants placed in the maxilla. The corresponding implants placed in the mandible showed cumulative survival and success rates of 97.9% and 93.8%, respectively. When cumulative survival and success rates of narrow implants were compared with those of standard-diameter implants, no statistical differences \(P > 0.05\) were found. Similar results were exhibited by the comparison between maxillary and mandibular implants \(P > 0.05\).

The prosthetic restoration of failed implants is reported in Table 3: five single-tooth crowns and one fixed partial prosthesis were used. During the follow-up period, one pontic \(3\-U\) broadcast prosthetic support by 3.4 \(10\-mm\) implants and one porcelain single-crown prosthesis supported by a 3.3 \(10\-mm\) implant fractures were observed. Moreover, 12 abutment-frame work fixing screw loosening also occurred. These prosthetic complications concerned partial fixed prostheses supported by small-diameter implants (five) and standard-diameter implants (seven), respectively.

**Table 5.** Radiographic and clinical assessments at the time of prosthetic loading and at last evaluation

<table>
<thead>
<tr>
<th>Implants</th>
<th>Marginal bone loss*</th>
<th>Last eval:</th>
<th>PD*</th>
<th>Last eval:</th>
<th>MBI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Loading: (X \pm \sigma)</td>
<td></td>
<td>Last eval: (X \pm \sigma)</td>
<td></td>
<td>Last eval: (X \pm \sigma)</td>
</tr>
<tr>
<td>Narrow diameter</td>
<td>Mesial 0.4 (\pm 0.5)</td>
<td>1.3 (\pm 1.3)</td>
<td>Mesial 2.1 (\pm 1.6)</td>
<td>2.3 (\pm 0.9)</td>
<td>Mesial 0.2 (\pm 0.4)</td>
</tr>
<tr>
<td>((n = 122))</td>
<td>Distal 0.5 (\pm 0.4)</td>
<td>1.7 (\pm 1.6)</td>
<td>Distal 2 (\pm 1.3)</td>
<td>2.4 (\pm 1.6)</td>
<td>Distal 0.3 (\pm 0.5)</td>
</tr>
<tr>
<td></td>
<td>Mean 0.5 (\pm 0.5)</td>
<td>1.5 (\pm 1.5)</td>
<td>Buccal 2.1 (\pm 1.1)</td>
<td>1.9 (\pm 1.4)</td>
<td>Buccal 0.3 (\pm 0.5)</td>
</tr>
<tr>
<td></td>
<td>Lingual 1.9 (\pm 1.2)</td>
<td>2.2 (\pm 1.9)</td>
<td>Lingual 2 (\pm 1.4)</td>
<td>2.2 (\pm 1.6)</td>
<td>Lingual 0.4 (\pm 0.5)</td>
</tr>
<tr>
<td></td>
<td>Mean 2 (\pm 1.4)</td>
<td>2.2 (\pm 1.6)</td>
<td>Mean 2 (\pm 1.4)</td>
<td>2.2 (\pm 1.6)</td>
<td>Mean 0.3 (\pm 0.5)</td>
</tr>
</tbody>
</table>
|                   | **Table 5.** Variations of the mean periosteal width (PTV) related to the implant diameter

<table>
<thead>
<tr>
<th>Time</th>
<th>Maxillary</th>
<th>Mandibular</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3.3</td>
<td>4.1</td>
</tr>
<tr>
<td>Loading: (X \pm \sigma)</td>
<td>(-2.1 (SD \pm 0.7))</td>
<td>(-3.5 (SD \pm 0.9))</td>
</tr>
<tr>
<td>Last eval: (X \pm \sigma)</td>
<td>(-4.6 (SD \pm 1.1))</td>
<td>(-4.8 (SD \pm 0.8))</td>
</tr>
</tbody>
</table>

*Marginal bone loss and probing depth were measured in millimeters.

\(n\), implants; \(X\), mean; \(\sigma\), standard deviation; MBI, modified bleeding index; PD, probing depth.

\(SD\), standard deviation.

Discussion

From the outcomes of the present study, using small-diameter implants seems to be a treatment option as predictable as using standard-diameter implants. The cumulative survival and success rates of the two groups of implants were comparable, both for the maxillary and mandibular implants. Cumulative survival rates of small-diameter ITI* implants were 98.1% and 96.9% for those placed in the maxilla and in the mandible, respectively. One of the three failed small-diameter implants was positioned in the posterior region of maxilla; also, two narrow implants positioned in the anterior areas of the mandibula failed (Table 3). Conversely, all failed standard-diameter implants (three) were placed in the posterior regions of maxilla (one) and mandibula (two). In the current report, the low number of implant failures was not statistically significant. In addition, data on implant prognosis suggest that high rates of implant survival can be achieved in maxillary sites, even those with a low trabecular density. Hence, a clear positive relationship between implant location and failure was not found by the authors.

Lekholm et al. (1999) published a 10-year prospective multicenter study on the rehabilitation of 125 partial edentulous patients. Four-hundred and sixty-one implants were placed in 71 mandibles and 56 maxillae. At the end of the 10-year period, implant survival rates of 90.2% and 93.7% were found for the maxilla and the mandible, respectively. Nevertheless, observations made in other reports are in direct opposition to this trend: a total of 1920 IMZ implants were evaluated retrospectively by...
### Table 7. Survival rates of narrow-diameter implants

<table>
<thead>
<tr>
<th>Interval (years)</th>
<th>Maxilla</th>
<th>Loaded implants</th>
<th>Drop outs*</th>
<th>Implants under risk†</th>
<th>Failures during the interval</th>
<th>Survival rate (%)</th>
<th>Cumulative survival rate (%)</th>
<th>Mandible</th>
<th>Loaded implants</th>
<th>Drop outs*</th>
<th>Implants under risk†</th>
<th>Failures during the interval</th>
<th>Survival rate (%)</th>
<th>Cumulative survival rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0–1</td>
<td>57</td>
<td>57</td>
<td>1</td>
<td>57</td>
<td>0</td>
<td>100</td>
<td>100</td>
<td>65</td>
<td>65</td>
<td>0</td>
<td>65</td>
<td>0</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>1–2</td>
<td>56</td>
<td>56</td>
<td>2</td>
<td>55</td>
<td>0</td>
<td>100</td>
<td>100</td>
<td>65</td>
<td>65</td>
<td>2</td>
<td>64</td>
<td>1</td>
<td>98.5</td>
<td>98.5</td>
</tr>
<tr>
<td>2–3</td>
<td>54</td>
<td>54</td>
<td>0</td>
<td>54</td>
<td>0</td>
<td>100</td>
<td>100</td>
<td>62</td>
<td>62</td>
<td>2</td>
<td>61</td>
<td>1</td>
<td>98.4</td>
<td>96.9</td>
</tr>
<tr>
<td>3–4</td>
<td>54</td>
<td>54</td>
<td>0</td>
<td>54</td>
<td>0</td>
<td>100</td>
<td>100</td>
<td>59</td>
<td>59</td>
<td>1</td>
<td>58.5</td>
<td>0</td>
<td>100</td>
<td>96.9</td>
</tr>
<tr>
<td>4–5</td>
<td>54</td>
<td>54</td>
<td>2</td>
<td>53</td>
<td>0</td>
<td>100</td>
<td>100</td>
<td>58</td>
<td>58</td>
<td>2</td>
<td>57</td>
<td>0</td>
<td>100</td>
<td>96.9</td>
</tr>
<tr>
<td>5–6</td>
<td>52</td>
<td>52</td>
<td>0</td>
<td>52</td>
<td>0</td>
<td>100</td>
<td>100</td>
<td>56</td>
<td>56</td>
<td>0</td>
<td>56</td>
<td>0</td>
<td>100</td>
<td>96.9</td>
</tr>
<tr>
<td>6–7</td>
<td>52</td>
<td>52</td>
<td>3</td>
<td>50.5</td>
<td>1</td>
<td>98.1</td>
<td>98.1</td>
<td>56</td>
<td>56</td>
<td>0</td>
<td>56</td>
<td>0</td>
<td>100</td>
<td>96.9</td>
</tr>
</tbody>
</table>

Life-table analysis (1–7 years).
*Implants lost to follow-up.
†Harmonic mean of the implants at the beginning of an interval and the ones remaining at the end of the same interval.

### Table 8. Success rates of narrow-diameter implants

<table>
<thead>
<tr>
<th>Interval (years)</th>
<th>Maxilla</th>
<th>Loaded implants</th>
<th>Drop outs*</th>
<th>Implants under risk†</th>
<th>Failures during the interval</th>
<th>Survival rate (%)</th>
<th>Cumulative survival rate (%)</th>
<th>Mandible</th>
<th>Loaded implants</th>
<th>Drop outs*</th>
<th>Implants under risk†</th>
<th>Failures during the interval</th>
<th>Survival rate (%)</th>
<th>Cumulative survival rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0–1</td>
<td>57</td>
<td>57</td>
<td>1</td>
<td>57</td>
<td>0</td>
<td>100</td>
<td>100</td>
<td>65</td>
<td>65</td>
<td>0</td>
<td>65</td>
<td>0</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>1–2</td>
<td>56</td>
<td>56</td>
<td>2</td>
<td>55</td>
<td>0</td>
<td>100</td>
<td>100</td>
<td>65</td>
<td>65</td>
<td>2</td>
<td>64</td>
<td>1</td>
<td>98.5</td>
<td>98.5</td>
</tr>
<tr>
<td>2–3</td>
<td>54</td>
<td>54</td>
<td>0</td>
<td>54</td>
<td>0</td>
<td>100</td>
<td>100</td>
<td>62</td>
<td>62</td>
<td>2</td>
<td>61</td>
<td>1</td>
<td>98.4</td>
<td>96.9</td>
</tr>
<tr>
<td>3–4</td>
<td>54</td>
<td>54</td>
<td>0</td>
<td>54</td>
<td>0</td>
<td>100</td>
<td>100</td>
<td>59</td>
<td>59</td>
<td>1</td>
<td>58.5</td>
<td>0</td>
<td>100</td>
<td>96.9</td>
</tr>
<tr>
<td>4–5</td>
<td>54</td>
<td>54</td>
<td>2</td>
<td>53</td>
<td>0</td>
<td>100</td>
<td>100</td>
<td>58</td>
<td>58</td>
<td>2</td>
<td>57</td>
<td>0</td>
<td>100</td>
<td>96.9</td>
</tr>
<tr>
<td>5–6</td>
<td>52</td>
<td>52</td>
<td>0</td>
<td>52</td>
<td>0</td>
<td>100</td>
<td>100</td>
<td>56</td>
<td>56</td>
<td>0</td>
<td>56</td>
<td>0</td>
<td>100</td>
<td>96.9</td>
</tr>
<tr>
<td>6–7</td>
<td>51</td>
<td>51</td>
<td>3</td>
<td>49.5</td>
<td>1</td>
<td>98.1</td>
<td>98.1</td>
<td>54</td>
<td>54</td>
<td>0</td>
<td>54</td>
<td>1</td>
<td>98.2</td>
<td>92</td>
</tr>
</tbody>
</table>

Life-table analysis (1–7 years).
*Implants lost to follow-up.
†Harmonic mean of the implants at the beginning of an interval and the ones remaining at the end of the same interval.

### Table 9. Survival rates of standard-diameter implants

<table>
<thead>
<tr>
<th>Interval (years)</th>
<th>Maxilla</th>
<th>Loaded implants</th>
<th>Drop outs*</th>
<th>Implants under risk†</th>
<th>Failures during the interval</th>
<th>Survival rate (%)</th>
<th>Cumulative survival rate (%)</th>
<th>Mandible</th>
<th>Loaded implants</th>
<th>Drop outs*</th>
<th>Implants under risk†</th>
<th>Failures during the interval</th>
<th>Survival rate (%)</th>
<th>Cumulative survival rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0–1</td>
<td>105</td>
<td>105</td>
<td>0</td>
<td>105</td>
<td>0</td>
<td>100</td>
<td>100</td>
<td>103</td>
<td>103</td>
<td>2</td>
<td>102</td>
<td>0</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>1–2</td>
<td>105</td>
<td>105</td>
<td>6</td>
<td>102</td>
<td>0</td>
<td>100</td>
<td>100</td>
<td>101</td>
<td>101</td>
<td>2</td>
<td>100</td>
<td>0</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>2–3</td>
<td>99</td>
<td>99</td>
<td>2</td>
<td>98</td>
<td>0</td>
<td>100</td>
<td>100</td>
<td>99</td>
<td>99</td>
<td>0</td>
<td>99</td>
<td>1</td>
<td>99</td>
<td>99</td>
</tr>
<tr>
<td>3–4</td>
<td>97</td>
<td>97</td>
<td>11</td>
<td>91.5</td>
<td>0</td>
<td>100</td>
<td>100</td>
<td>98</td>
<td>98</td>
<td>4</td>
<td>96</td>
<td>0</td>
<td>100</td>
<td>99</td>
</tr>
<tr>
<td>4–5</td>
<td>86</td>
<td>86</td>
<td>3</td>
<td>84.5</td>
<td>0</td>
<td>100</td>
<td>100</td>
<td>94</td>
<td>94</td>
<td>0</td>
<td>94</td>
<td>0</td>
<td>100</td>
<td>99</td>
</tr>
<tr>
<td>5–6</td>
<td>83</td>
<td>83</td>
<td>0</td>
<td>83</td>
<td>0</td>
<td>100</td>
<td>100</td>
<td>94</td>
<td>94</td>
<td>3</td>
<td>92.5</td>
<td>1</td>
<td>98.9</td>
<td>97.9</td>
</tr>
<tr>
<td>6–7</td>
<td>83</td>
<td>83</td>
<td>0</td>
<td>83</td>
<td>1</td>
<td>98.8</td>
<td>98.8</td>
<td>90</td>
<td>90</td>
<td>0</td>
<td>90</td>
<td>0</td>
<td>100</td>
<td>97.9</td>
</tr>
</tbody>
</table>

Life-table analysis (1–7 years).
*Implants lost to follow-up.
†Harmonic mean of the implants at the beginning of an interval and the ones remaining at the end of the same interval.
implants at implants
Survival Cumulative Survival

Table 10. Success rates of standard-diameter implants

<table>
<thead>
<tr>
<th>Interval (years)</th>
<th>Mandible Maxilla</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Implants alive</td>
</tr>
<tr>
<td></td>
<td>at the end of the interval</td>
</tr>
<tr>
<td>0.1</td>
<td>105</td>
</tr>
<tr>
<td>1</td>
<td>105</td>
</tr>
<tr>
<td>2</td>
<td>103</td>
</tr>
<tr>
<td>3</td>
<td>100</td>
</tr>
<tr>
<td>4</td>
<td>99</td>
</tr>
<tr>
<td>5</td>
<td>98</td>
</tr>
<tr>
<td>6</td>
<td>98</td>
</tr>
<tr>
<td>7</td>
<td>99</td>
</tr>
<tr>
<td>8</td>
<td>100</td>
</tr>
<tr>
<td>9</td>
<td>100</td>
</tr>
<tr>
<td>10</td>
<td>103</td>
</tr>
<tr>
<td>11</td>
<td>100</td>
</tr>
<tr>
<td>12</td>
<td>100</td>
</tr>
<tr>
<td>13</td>
<td>100</td>
</tr>
<tr>
<td>14</td>
<td>100</td>
</tr>
<tr>
<td>15</td>
<td>100</td>
</tr>
<tr>
<td>16</td>
<td>100</td>
</tr>
<tr>
<td>17</td>
<td>100</td>
</tr>
<tr>
<td>18</td>
<td>100</td>
</tr>
<tr>
<td>19</td>
<td>100</td>
</tr>
<tr>
<td>20</td>
<td>100</td>
</tr>
</tbody>
</table>

Harmonic mean of the implants at the beginning of an interval and the ones remaining at the end of the same interval.

The authors of the present study attribute the failure of the biomechanically overloaded implant to an occlusal pattern modification. Moreover, by means of two retrospective studies, Esposito et al. (1998a, 1998b) came to the conclusion that technical and biomechanical problems led to implant failure more frequently than peri-implantitis. Experimental studies (Ivanoff et al. 1997; Kido et al. 1997) demonstrated that removal torque and pull-out force increase because of wider implant diameters; however, the difference was not statistically significant. Furthermore, despite the reduced dimensions and resistance to loading forces, no differences were recorded between survivals of small-diameter (3- and 3.25-mm) and standard-diameter (3.75- and 4.25-mm) implants. According to these results, a recent study (Friberg et al. 2002) on implants of various diameters suggested that the biomechanical aspects of the bone–implant interface may have a greater impact on implant stability than the diameter itself. In an ITI multicenter study with 2359 implants,
Buser et al. [1997] ascribed the failure of 23 loaded implants (about 7%) to peri-implant infection. Similar findings were obtained by Zinsli et al. [2004]: four loaded implants (1.4%) were reported with manifestations of peri-implantitis that could be treated and maintained successfully. Nevertheless, in the present study, only one (4.1%) was maintained successfully. Nevertheless, in the present study, only one (4.1%) of the six failed implants showed complete peri-implant bone resorption and mobility on account of biomechanical overloading. No narrow implant failed owing to biomechanical overloading, and the other failures were because of untreated peri-implant infections. Poor oral hygiene was noted at periodic control visits for all patients who experienced implant failures because of peri-implant infections: the authors considered that oral hygiene appeared to be a factor associated with marginal bone resorption more than load-related factors. A prospective 15-year follow-up study of Lindquist et al. [1996] agreed with these findings, concluding that smoking habit and oral hygiene influenced the implant prognosis more than biomechanical factors. Poor oral hygiene was positively correlated to bone loss around anterior implants.

According to Lekholm & Zarb [1985] and Jaffin & Berman’s [1991] evaluations on peri-implant bone quality and quantity, this prospective study confirmed the role of bone quality in conditioning the implant prognosis: in fact, 66.6% of the failed standard and narrow implants were positioned in type 4 bone. Although the maxillary arch exhibited soft bone quality as compared with the mandible, only two maxillary implants failed. However, the low number of failures has answered the authors to perform further researches on a larger number of implants so that these statements can be confirmed.

Friberg et al. [1991] suggested that jaw shape and bone quality seemed to be the two most important factors in implant survival. In 32% of the implant losses, they considered bone quality at fixture placement to be extremely soft. Similar conclusions were made by Engquist et al. [1988] in a retrospective multicenter report on osseointegrated implants supporting overdenture prostheses. Furthermore, a multicenter study on factors related to the success and failure of 510 Bränemark implants was performed by Hutton and co-workers [1995]: by means of a multivariate analysis (multiple logistic regression), it was revealed that dental arch (P = 0.0193) and bone quality (P = 0.0434) were the only variables that remained significantly related to implant failure. Such a relationship did not clearly exist from the results of a retrospective clinical report presented by Ivanoff et al. [1999]: however, they explained the lack of a relationship between implant failure, jaw type and bone quality by the fact that the number of failed implants was low, which results in a low power. According to the results of the present study, they also denied a relationship between different implant diameters and marginal bone loss.

In this longitudinal report, the mean marginal bone loss scores of narrow- and standard-diameter implants were comparable [Table 5]; this result was not in accordance with previous experimental findings using finite-element method analysis, in which increasing implant diameters were associated with lower stress in the marginal compact bone around implants [Matsushita et al. 1999]. Besides, in a prospective clinical study by Andersen et al. [2001], marginal bone loss was measured as an initial criteria for implant stability: Periotest™ measurements were performed because the radiofrequency resonance analysis was not available since the start of the examinations. Objections have been raised on the clinical use of the Periotest™ method. Although a good inter-examiner reliability has been reported, PTVs can be increased or decreased by changes in the vertical measuring point on the implant abutment, the handpiece angulation and the horizontal distance of the handpiece from the implant. Therefore, the use of the resonance frequency analysis device seems to be safer in assessing reliable implant stability data, because variables during standardized measurements are kept to a minimum [Meredith et al. 1998]. Isidor [1998] showed that the use of Periotest Instrument™ was of little additional value in assessing the stability of implants, as compared with manual mobility assessments. However, a number of researchers [Salonen et al. 1993; van Steenbergh & Quirynen 1993; van Steenbergh et al. 1995; Chiapasco et al. 2001; Romeo et al. 2003] have reported the use of the Periotest™ to detect sub-clinical mobility of osseointegrated implants, in a retrospective study after monitoring the damping capacity of 1182 consecutively inserted implants, Aparicio & Orozco [1998] proposed the use of the Periotest™ as an initial criteria of success. PT values exhibited in the current study [Table 6] agreed with the range (between −7 and +1 U for maxillary implants and between −7 and 0 U for mandibular implants) established by van Steenbergh & Quirynen [1993]. The initial PTVs of standard-diameter implants were 1.4 and 1.1 U lower than those of small-diameter implants; one reason why the mean Periotest™ values obtained at the implant loading for 4.1-mm-diameter implants were lower than the values for 3.3-mm-diameter implants might be related to the fact that standard-diameter implants have a lower flexural modulus than narrow implants. Nevertheless, the difference was buffered afterward till the PT values were 0.2 and 0.3 U lower for maxillary and mandibular implants, respectively [Table 6]. Furthermore, by means of multi-linear regression analysis, no relationship was found between implant stability assessed by Periotest™ and 3.3- or 4.1-mm implant diameters.

The results presented can be summarized as follows:

(i) Narrow implants medium-term prognosis is comparable to the one of standard-diameter implants followed up in the present study. Therefore, the high reliability of small-diameter implants is confirmed.

(ii) Standard and narrow implant prognoses were influenced by peri-implant bone infection more than biomechanical factors, such as implant overloading.

(iii) Peri-implant bone resorption was not significantly influenced by different implant diameters (3.3 and 4.1 mm).

(iv) Bone quality seems to be an important prognosis factor both for standard- and small-diameter implants; spongy bone (type 4) may increase...
implant failures. This trend needs to be confirmed by the clinical evaluation of a larger number of implants.

Survival of standard and narrow implants does not seem to be affected by implant location. However, because of the low number of implant failures observed in the current study, further research is required to elucidate the most appropriate implant distribution.

Acknowledgements: The authors gratefully acknowledge the assistance of Mr Stefano Storelli, Department of Prosthodontics, Dental Clinic, School of Dentistry, University of Milan, Italy in collecting and analyzing data.

References


Lekholm, U. (1992) The Bra˚nemark implant tech-
Lekholm, U., Gunne, J., Henry, P., Higuchi, K.,

Romeo et al. Clinical and radiographic evaluation of small-diameter implants

Data. The Statistical Analysis of Failure Time
Data. 1st edition, 1–38. New York: Wiley and
Sons Inc.

implant-supported superstructures in the com-
site grafted maxilla. Journal of Oral Rehabilita-
tion 26: 619–23.

Kido, H., Schulz, E.E., Kumar, A., Lozada, J. &
Saha, J. (1997) Implant diameter and bone density:

Lazzara, R., Siddiqui, A.A., Binon, P., Feldman,
S.A., Weiner, R., Phillips, R. & Gonshor, A.
[1996] Retrospective multicenter analysis of 31
endosseous dental implants placed over a five-
year period. Clinical Oral Implants Research 7:
73–83.

Lekholm, U. (1992) The Brånemark implant tech-
nique. A standardized procedure under continuous
development. In: Laney, W.R. & Tolman, D.E., eds. Tissue Integration in Oral, Orthopedic and
Maxillofacial Reconstruction, 194–199. Chicago:
Quintessence.

Lekholm, U., Gunne, J., Henry, P., Higuchi, K.,
Linden, U., Bergström, C. & van Steenbergh, D.
[1999] Prospective multicenter study of partially

and preparation. In: Brånemark, P.I., Zarb, G. &
Albrektsson, T., eds. Tissue-Integrated Prosthe-
ses: Osseointegration in Clinical Dentistry,

prospective 15-year follow-up study of mandibu-
lar fixed prostheses supported by osseointegrated
implants. Clinical results and marginal bone loss.

Matsushita, Y., Kitoh, M., Mizuta, K., Ikega, H. &
Suetsugu, T. [1990] Two-dimensional FEM ana-
lysis of hydroxyapatite implants: diameter effects
on stress distribution. Journal of Oral Implantol-
yogy 16: 6–11.

Meredith, N., Friberg, B., Sennerby, L. & Aparicio,
C. [1998] Relationship between contact time
measurements and PTv values when using the
periotest to measure implant stability. Interna-

Mombelli, A. & Lang, N.P. (1994) Clinical para-
eters for evaluation of dental implants. Periodon-

and treatment of peri-implantitis. Periodontology

Mombelli, A., Van Osten, M.A.C., Schuch, E. &
Lang, N.P. [1987] The microbiota associated with
successful or failing osseointegrated titanium im-
plants. Oral Microbiology and Immunology 2:
145–151.

Polizzi, G., Fabbro, S., Furr, M., Herrmann, I. &
Squarzoni, S. [1999] Clinical application of nar-
row Brånemark system implants for single tooth
restorations. International Journal of Oral 
& Maxillofacial Implants 14: 496–503.

Rangert, B., Krough, P.H., Langer, B. & Van Roekel,
N. [1995] Bending overload and implant fracture:
a retrospective clinical analysis. International Journal of Oral and Maxillofacial Implants 10:
326–334.

Romeo, E., Chiapasco, M., Ghisolfi, M. & Vogel, G.
[2001] Long-term clinical effectiveness of oral
implants in the treatment of partial edentulism.
7-year life table analysis of a prospective study
with ITI dental implants system used for single-
tooth restoration. Clinical Oral Implants Re-
search 13: 133–143.

Romeo, E., Lops, D., Margutti, E., Ghisolfi, M.,
Chiapasco, M. & Vogel, G. [2003] Implant-sup-
ported fixed cantilever prostheses in partially eden-
tulous arches. A seven-year prospective study.

Roos, J., Sennerby, L., Lekholm, U., Jemt, T.,
Gröndal, K. & Albrektsson, T. [1997] A qualita-
tive and quantitative method for evaluating
implant success: a 5-year retrospective ana-
& Maxillofacial Implants 12: 504–514.

compilation of clinical results obtained with ster-
oss endosseous implants. Compendium Continue
Education Dentistry 17: 669–674, 676 passim;
quiz 688.

Salonen, M., Oikarinen, K., Virtanen, K. & Pernu,
H. [1993] Failures in the osseointegration of en-
dosseous implants. International Journal of Oral 

Schwarz, M.S. [2000] Mechanical complications of
dental implants. Clinical Oral Implants Research

results of the osseo ti implant system in general
dental practice. European Journal of Prosthodon-
tic Restorative Dentistry 4: 21–38.

Ten Bruggenkate, C.M. [1996] Successes and failures
at the iti system [1–7 year follow-up]. Presented at
the CMHI Meeting, Dordrecht, the Netherlands.

van Steenbergh, D., Lekholm, U., Bolender, C.,
Folmer, T., Henry, P. & Herrman, I. [1990] The
applicability of osseointegrated oral implants in
the rehabilitation of partial edentulism. Interna-
tional Journal of Oral & Maxillofacial Implants

van Steenbergh, D. & Quirynen, M. [1993] Reprodu-
cibility and detection threshold of peri-implant diag-

van Steenbergh, D., Sullivan, D., Listrom, R.,
Balsi, T., Henry, P.J. & Worthington, P. [1989]
A retrospective multicenter evaluation of the
survival rate of osseointegrated fixtures supporting
fixed partial prostheses in the treatment of partial
edentulism. Journal of Prosthetic Dentistry 61:
217–223.

van Steenbergh, D., Tricio, J., Naert, I. & Nys, A.
[1995] Damping characteristics of bone-to-implant
interfaces. Clinical Oral Implants Research

Vigolo, P. & Givani, A. [2000] Clinical evaluation of
single tooth minimplant restorations. Journal of
Prosthetic Dentistry 84: 50–54.

Wedgood, D., Jennings, K.J., Critchlow, H.A. &
Watkinson, A. [1992] Experience with ITI os-
seointegrated implants at five centers at U.K.
British Journal of Oral and Maxillofacial Surgery
30: 377–381.

Zinsli, B., Sägesser, T., Mercies, E. & Mercies-Stein,
R. [2004] Clinical evaluation of small-diameter ITI